Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings.
نویسندگان
چکیده
Light signals perceived by the phytochromes induce the transition from skotomorphogenic to photomorphogenic development (deetiolation) in dark-germinated seedlings. Evidence that a quadruple mutant (pifq) lacking four phytochrome-interacting bHLH transcription factors (PIF1, 3, 4, and 5) is constitutively photomorphogenic in darkness establishes that these factors sustain the skotomorphogenic state. Moreover, photoactivated phytochromes bind to and induce rapid degradation of the PIFs, indicating that the photoreceptor reverses their constitutive activity upon light exposure, initiating photomorphogenesis. Here, to define the modes of transcriptional regulation and cellular development imposed by the PIFs, we performed expression profile and cytological analyses of pifq mutant and wild-type seedlings. Dark-grown mutant seedlings display cellular development that extensively phenocopies wild-type seedlings grown in light. Similarly, 80% of the gene expression changes elicited by the absence of the PIFs in dark-grown pifq seedlings are normally induced by prolonged light in wild-type seedlings. By comparing rapidly light-responsive genes in wild-type seedlings with those responding in darkness in the pifq mutant, we identified a subset, enriched in transcription factor-encoding genes, that are potential primary targets of PIF transcriptional regulation. Collectively, these data suggest that the transcriptional response elicited by light-induced PIF proteolysis is a major component of the mechanism by which the phytochromes pleiotropically regulate deetiolation and that at least some of the rapidly light-responsive genes may comprise a transcriptional network directly regulated by the PIF proteins.
منابع مشابه
Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis.
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show th...
متن کاملLethal intergroup aggression leads to territorial expansion in wild chimpanzees
of increasingly economical new-generation high-throughput DNA-sequencing technologies can be expected to permit genome-wide definition of the primary phy-regulated transcriptional network through the use of ChIP-seq and RNA-seq procedures. Proteomic approaches, such as mass spectrometric analysis, may provide an avenue for unravelling the current enigma of the capacity of the phy molecule to in...
متن کاملMultiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness
BACKGROUND An important contributing factor to the success of terrestrial flowering plants in colonizing the land was the evolution of a developmental strategy, termed skotomorphogenesis, whereby postgerminative seedlings emerging from buried seed grow vigorously upward in the subterranean darkness toward the soil surface. RESULTS Here we provide genetic evidence that a central component of t...
متن کاملRapid, organ-specific transcriptional responses to light regulate photomorphogenic development in dicot seedlings.
The dicotyledon seedling undergoes organ-specific photomorphogenic development when exposed to light. The cotyledons open and expand, the apical hook opens, and the hypocotyl ceases to elongate. Using the large and easily dissected seedlings of soybean (Glycine max 'Williams 82'), we show that genes involved in photosynthesis and its regulation dominate transcripts specific to the cotyledon, ev...
متن کاملArabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark.
Arabidopsis thaliana seedlings undergo photomorphogenic development even in darkness when the function of DE-ETIOLATED1 (DET1), a repressor of photomorphogenesis, is disrupted. However, the mechanism by which DET1 represses photomorphogenesis remains unclear. Our results indicate that DET1 directly interacts with a group of transcription factors known as the phytochrome-interacting factors (PIF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2009